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Abstract

Despite promising progress in reinforcement learning (RL), developing algorithms
for autonomous driving (AD) remains challenging: one of the critical issues
being the absence of an open-source platform capable of training and effectively
validating the RL policies on real-world data. We propose DriverGym, an open-
source OpenAI Gym-compatible environment specifically tailored for developing
RL algorithms for autonomous driving. DriverGym provides access to more than
1000 hours of expert logged data and also supports reactive and data-driven agent
behavior. The performance of an RL policy can be easily validated on real-world
data using our extensive and flexible closed-loop evaluation protocol. In this work,
we also provide behavior cloning baselines using supervised learning and RL,
trained in DriverGym. Code and videos are available on the L5Kit repository.
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Figure 1: DriverGym: an open-source gym environment that enables training RL driving policies on
real-world data. The RL policy can access rich semantic maps to control the ego (red). Other agents
(blue) can either be simulated from the data logs or controlled using a dedicated policy pre-trained
on real-world data. We provide an extensible evaluation system (purple) with easily configurable
metrics to evaluate the idiosyncrasies of the trained policies.

1 Introduction

Recently, Reinforcement Learning (RL) has achieved great success in a variety of applications like
playing Atari games [Mnih et al., 2013], board games [Silver et al., 2017], manipulating sensorimotor

Machine Learning for Autonomous Driving Workshop at the 35th Conference on Neural Information Processing
Systems (NeurIPS 2021), Sydney, Australia.

https://lyft.github.io/l5kit/


Table 1: Comparison of various open-source RL simulation environments for autonomous driving.

Name Gym
Compatible

Evaluation
Protocol

Simulator
Expert Data

Real-world
Expert Data

Agents
Model

TORCS 7 7 7 7 Rule-based
Highway-Env X 7 7 7 Rule-based
CARLA (Official) 7 X 14 hrs 7 Rule-based
SMARTS X X 7 7 Rule-based or Data-driven
CRTS X X 7 64 hrs Real-world Logs
DriverGym X X 7 1000 hrs Data-driven or Real-world Logs

in three-dimensions [Martín-Martín et al., 2019]. However, developing RL algorithms for real-world
applications such as autonomous driving (AD) remains an open challenge [Kiran et al., 2020]: with
AD being an extremely safety-critical task, one cannot directly deploy a policy in the real world for
data collection or policy validation.

One solution is to deploy the policy in the real world with a safety driver inside the car at all times.
However, this process is time-consuming, and more importantly, not accessible to all of the research
community. Therefore, to tackle this challenge, there is a dire need for an RL simulation environment
that can (1) be used to easily train RL policies using real-world logs, (2) simulate surrounding agent
behavior that is both realistic and reactive to the ego policy, (3) effectively evaluate the trained models,
(4) be flexible in its design, and (5) inclusive to the entire research community.

We propose DriverGym, an open-source gym-compatible environment specifically tailored for
developing and experimenting with RL algorithms for self-driving (see Fig. 1). DriverGym utilizes one
of the largest public self-driving datasets, Level 5 Prediction Dataset [Houston et al., 2020] containing
over 1,000 hours of data, and provides support for reactive agent behavior simulation [Bergamini
et al., 2021] using data-driven models. Furthermore, DriverGym provides an extensive and extensible
closed-loop evaluation system: it not only comprises a variety of AD-specific metrics but also can
be easily extended to incorporate new metrics to evaluate idiosyncrasies of trained policies. We
open-source the code and pre-trained models to stimulate development.

In this work, we provide the following contributions:

• An open-source and OpenAI gym-compatible environment for autonomous driving task;
• Support for more than 1000 hours of real-world expert data;
• Support for logged agents replay or data-driven realistic agent trajectory simulations;
• Configurable and extensible evaluation protocol;
• Provide pre-trained models and the corresponding reproducible training code.

2 Related Work

To replicate the success of the OpenAI Gym framework [Brockman et al., 2016], many simulation
environments have been developed in the context of autonomous driving [Espié et al., 2005, Leurent,
2018, Dosovitskiy et al., 2017, Lopez et al., 2018, Quiter and Ernst, 2018]. Table 1 provides a
comparison amongst commonly used RL simulation environments including DriverGym. Racing
simulators like TORCS [Espié et al., 2005] offer limited scenarios of driving. Highway-Env [Leurent,
2018] provides a collection of gym-compatible environments for autonomous driving. However, it
lacks important semantic elements like traffic lights, an extensive evaluation protocol and expert data.

Traffic simulators like CARLA [Dosovitskiy et al., 2017], SUMO [Lopez et al., 2018] supports flexible
specification of traffic conditions for training and testing. However, they are synthetic simulators that
utilize hand-coded rules for surrounding agents’ motion that tends to be unrealistic and display a
limited variety of behaviors. Crucially, they lack access to real-world data logs. SMARTS [Zhou
et al., 2020] overcomes the former issue by providing Social Agent Zoo that supports data-driven
agent models while CRTS [Osinski et al., 2020] tackles the latter providing access to 64 hours of
real-world logs within the CARLA simulator. DriverGym solves both these challenges: it enables
simulating reactive agents using data-driven models learned from real-world data, and provides access
to 1000 hours of real-world logs to initialize episodes or simulate agents.
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Figure 2: Visualization of an episode rollout (ego in red, agents in blue) in DriverGym. The policy
prediction (green line) is scaled by factor of 10 and shown at 2 second intervals for better viewing.

3 DriverGym

DriverGym aims to foster the development of RL policies for self-driving by providing a flexible
interface to train and evaluate RL policies. Our environment is compatible with both SB3 [Raffin
et al., 2019] and RLlib [Liang et al., 2018], two popular frameworks for training RL policies. Our
code is open-source with Apache 2 license. We describe the components of our environment below.

3.1 State Representation

The state representation captures the context around the ego agent, in particular, the surrounding
agents’ positions, their velocities, the lanes and traffic lights. We encode this information in the
form of a 3D tensor that is the birds-eye-view (BEV) raster image of the current frame. DriverGym
supports all the rasterization modes provided by L5Kit [Houston et al., 2020] (see Fig 3 in Appendix).
Compared to Atari environments, DriverGym requires more time to generate observations as the
latter has to load real-world data and subsequently render high-resolution raster images.

3.2 Action Spaces

The action produced by the RL policy is used to control the motion of the ego agent. The action is
propagated as (x, y, yaw) to update the state of the ego. Still, DriverGym does not make any strict
assumptions on the policy itself which can, for instance, output (acceleration, steer) and use a
kinematic model to decode the next-step observation.

3.3 Reactive Agents

An important component of the DriverGym environment is to model the motion of the surrounding
agents. DriverGym allows flexibility in this aspect and currently support two ways of controlling the
behavior of surrounding agents: log replay and reactive simulation.

In log replay, during an episode rollout, the movement of surrounding agents around the ego is
replayed in the exact same manner as it happened when the log was collected in the real world.
In reactive simulation, the agent behavior is both reactive and realistic. Motivated by [Bergamini
et al., 2021], DriverGym allows simulating agent reactivity using data-driven models that learn agent
behavior from real-world data, i.e., users can provide neural-network-based agent models trained on
real-world data, to simulate agent behavior.

3.4 Rewards

The rewards in the environment quantify the performance of a driving policy during a rollout and
subsequently guide the training of the policy using reinforcement learning. DriverGym, through
the Closed-Loop Evaluation (CLE), supports a variety of AD-specific metrics that are computed
per-frame, and can be combined to construct the reward function. This system is described in the
section below.
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Table 2: Evaluation of different training strategies using the CLE protocol in DriverGym. Lower is
better. SL: Supervised learning using L2 imitation loss, SL + P: SL plus trajectory pertubations, PPO:
RL using PPO, with imitation-loss based reward. More information about metrics and validators in
Appendix A.1. Metrics and validators are in the format: average (std. deviation).

Method Metrics Validators

Average
Displacement

Final
Displacement

Final
Displacement
(>= 30.0m)

Distance To
Reference
(>= 4.0m)

Front
Collision

Side
Collision

Rear
Collision

SL 32.4 ± 2.7 74.5 ± 5.5 9.5 ± 4.9 26 ± 0.0 12.5 ± 3.5 19 ± 5.6 16 ± 1.4
SL + P 13.4 ± 1.4 25.5 ± 3.5 5.3 ± 0.6 9.7 ± 1.5 9 ± 2.6 12.3 ± 6.8 7 ± 0.0
PPO 18.7 ± 2.3 46.4 ± 7.7 4.0 ± 2.0 12.7 ± 3.2 4.3 ± 2.5 6 ± 3.5 27 ± 5.0

3.5 Closed-Loop Evaluation Protocol

Having an extensive closed-loop evaluation (CLE) protocol is a necessity to correctly assess the
performance of RL policies before deployment in safety-critical real-world scenarios. Our CLE
framework comprises insightful AD-specific metrics: the first set of metrics, specific to imitation
learning, are distance-based metrics. The second set of metrics, specific to safety, capture the various
types of collisions that occur between ego and surrounding agents. These include front collision,
side collision and rear collisions. More importantly, our CLE framework can be easily extended to
incorporate new metrics that can help to test various properties of the trained policy. An in-depth
description of our CLE and its flexibility is provided in the appendix section.

4 Experiments

We evaluate three different algorithms using DriverGym to compare the effectiveness of these training
strategies. The first one is an open-loop training baseline using L2 imitation loss (SL). Naive
behavioral cloning is known to suffer from distribution shift between training and test data [Ross
et al., 2011]. We compare it with a stronger baseline, inspired by ChaufferNet [Bansal et al., 2019],
that alleviates distribution shift by introducing synthetic perturbations to the training trajectories (SL
+ P).

We also evaluate an RL policy, namely Proximal Policy Optimization (PPO) [Schulman et al., 2017]
implemented in the SB3 framework [Raffin et al., 2019]. We choose PPO as it not only demonstrates
remarkable performance but it is also empirically easy to tune [Schulman et al., 2017]. All the
experiments have been performed on 2 Tesla T4 GPUs. The details of the model architectures,
training strategies, hyperparameters used and experimental setup are provided in the appendix.

The performance of three runs (different seeds) of the three models on 100 real-world test scenes is
reported in Table 2. Based on distance-based metrics, PPO is similar to SL + P in terms of ADE,
however it suffers from high FDE. PPO showed fewer front and side collisions, however, it showed a
much higher number of rear collisions, which can be explained by the passiveness of the ego vehicle.
Finally, SL is the worst and corroborates the expectations.

5 Discussion

We believe DriverGym is an important step towards solving the task of planning for autonomous
driving. Thanks to its gym-compatible interface, it allows to easily train and evaluate RL policies for
self-driving. Furthermore, surrounding agents can be controlled via a model trained on real-world data
to improve their reactivity towards the ego. A current weakness of DriverGym is the time complexity
of policy rollouts, which can be reduced through faster observation generation and mitigation of
inter-process communication.

One avenue for future work is to provide fine-grained policy evaluation for different scene categories
(e.g. restarting from an intersection controlled by a traffic light). We hope that DriverGym will
provide a common ground for policy evaluation that is extensible, and will drive the improvement of
the next generation of planning algorithms.
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Figure 3: Example Rasterization Modes Figure 4: Evaluation Plan

A Appendix

A.1 Closed-Loop Evaluation Protocol

Our CLE works on top of the simulation outputs provided by episode rollouts in DriverGym. An
evaluation plan (Fig. 4) is defined that comprises (1) metrics that are computed per frame (e.g. L2
displacement error) (2) validators that enforce constraints on the metrics per scene (L2 displacement
error ≤ 4 meters), and (3) composite metrics per scene, that can depend both on the output of metrics
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Table 3: Description of the various metrics provided in closed-loop evaluation protocol.
Name Type Description

Average Displacement Distance-Based Computes the L2 distance between predicted ego centroid and
ground-truth ego centroid averaged over the entire episode

Final Displacement Distance-Based Computes the L2 distance between predicted ego centroid and
ground-truth ego centroid at the last timestep of the episode

Distance to Reference Distance-Based Computes the L2 distance between the predicted centroid and the
closest waypoint in the reference trajectory (ground-truth ego)

Front Collision Safety-Based Computes whether a collision occurred between the front of ego and
any another agent

Side Collision Safety-Based Computes whether a collision occurred between a side of ego and
any another agent

Rear Collision Safety-Based Computes whether a collision occurred between the rear of ego and
any another agent

and validators (e.g. passed driven miles). An example plan is provided in Listing 2. Note that our
CLE supports both reactive and non-reactive agents.

The evaluation protocol is flexible and new metrics can be easily incorporated to target specific cases
of model failures. Within CLE, the user has access to all the simulation artifacts (trajectories, maps,
log replay data of ego and agents) while designing a new metric. We hope the DriverGym evaluation
protocol facilitates researchers to diagnose targeted behaviors of their policies.

A.2 Model Architecture

In our experiments, the backbone feature extractor is shared between the policy and the value
networks. The feature extractor is composed of two convolutional networks followed by a fully
connected layer, with ReLU activation. The feature extractor output is passed to both the policy and
value networks composed of two fully connected layers with tanh activation. The open-loop baseline
models have the same backbone architecture as above.

We perform group normalization after every convolutional layer. Empirically, we found that group
normalization performs far superior to batch normalization. This can be attributed to the fact that
activation statistics change quickly in on-policy algorithms (PPO is on-policy) while batch-norm
learnable parameters can be slow to update causing training issues.

A.3 Training

The training data comprises 100 scenes (average frame length ∼ 248) where the initial frame is
randomly sampled. The open-loop baseline models are trained in a supervised manner where the L2
loss is calculated on the predictions of 12 future time-steps (1.2 secs).

We train the PPO policy in closed-loop (the surrounding agents are log replayed) for episodes of
length 32 time-steps. PPO policy network predicts the mean and standard deviation values of a
gaussian to represent its actions. Further, the policy is initialized such that the initial actions are
independent of the observations. Therefore, we normalize the action space (zero mean) for faster
training convergence. For further training stability, we incorporate a unicycle kinematic model at the
policy output, i.e. the policy predicts the acceleration and steer.

For the PPO policy, we use an imitation loss-based reward. We define the reward as the negative of
the L2 distance between the policy prediction and ego replay at every time-step. Reward clipping is
performed for stability. Note that, DriverGym can also incorporate non-differentiable hand-crafted
rules like collisions in the reward function to train different RL policies.
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A.4 Hyperparameters

We train the PPO policy for 12M steps in which the learning rate is fixed to 3e−4 for the first 8M
steps and then decreased by a factor of 10 for the rest of the training. The discount factor is 0.80 and
GAE is 0.90. 4 environments are rolled out in parallel for a total of 1024 time-steps before the model
is updated for 10 epochs on the collected rollout buffer. The mini-batch size of the model update is
64 and the clipping parameter ε follows a linear decay schedule during training starting from 0.1.
The reward clipping threshold is fixed to 15.

We train on 112× 112 pixel BEV rasters centered around the ego. The raster image is generated by
combining the semantic map (3 channels) and the bounding boxes of the various agents in the scene
(top image in Fig 3). The past history and current bounding boxes of the agents (including ego) are
incorporated via the channel dimension. We consider a history of 3 frames which along with the
current frame leads to an additional 8 channels resulting in a raster image of size 112× 112× 11.
The raster image is transformed such that it is centered around the ego vehicle.

A.5 Visualizations

The DriverGym environment provides the user with the ability to visualize the output of episode
rollouts (see example in Fig 2). The visualization is carried out using the Bokeh interaction
visualization library [Bokeh Development Team, 2018].

A.6 DriverGym API Snippets

1 from stable_baselines3 import PPO
2 import gym
3

4 env = gym.make("drivergym-v0")
5 model = PPO("CnnPolicy", env)
6 model.learn(n_steps=1000000)

Listing 1: Code snippet showing the user API for using DriverGym environment with Stable
Baselines3 [Raffin et al., 2019].

1 from l5kit.cle.metrics import SupportsMetricCompute
2

3 class L2DisplacementErrorMetric(SupportsMetricCompute):
4 metric_name = "l2_displacement_error"
5

6 def compute(self, simulation_output: SimulationOutputCLE) -> torch.Tensor:
7 simulated_scene_ego_state = simulation_output.simulated_ego_states
8 simulated_centroid = simulated_scene_ego_state[:, :2]
9 observed_ego_states = simulation_output.recorded_ego_states[:, :2]

10 return torch.norm(simulated_centroid - observed_ego_states_fraction)

Listing 2: Code snippet showing the flexibility of adding new metrics to closed-loop evaluator (CLE).
In this example, we are defining a L2 displacement error metric.
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